Bionic eye could spot assembly line faults faster

Engineers from Imperial College London are creating an artificial retina that captures light to build an image of its surrounding environment. The researchers behind the EU-funded 'SeeBetter' project suggest replicating the retina on a single, specialised silicon chip will enable more accurate artificial visual sensing in industrial processes.

The team are working in conjunction with the Institute of Neuroinformatics in Zurich and IMEC. It aims to combine the artificial retina with a simple software infrastructure, enabling information to be processed in a similar way to the brain. When applied in industry, this could allow a robot to process and react to information, which could for example, enable manufacturers to recognise faults much quicker in the products they are making.

"The ultimate goal for this technology is in healthcare to restore sight to people who are blind, but this is still a long way off," Dr Konstantin Nikolic, one of the lead researchers from Imperial's Department of Electrical and Electronic Engineering, said. "In the short term we see our technology being extremely useful in improving machine vision in manufacturing.

"In order for a conventional camera to capture and identify a faulty product on a manufacturing production line the conveyor belt must be moving fairly slowly. When you use a faster image capturing and processing system, such as our artificial retina, it could recognise a faulty product and react faster, saving money in the manufacturing process."

The sensor is said to work in a similar way to the neurons it is imitating, sending either an 'on' or 'off' signal to the processing chip, or 'brain'. It is currently capable of identifying and tracking objects, as well as determining their speed and is claimed to be able to measure minute changes in light intensity, right down to the individual pixel.

The final 'picture' is composed of only the moving elements essential for computer processing, making the process quicker and more efficient. The information is then used to produce a video stream that can be transmitted to a screen for display.

The technology combines an off-the-shelf vision sensor with programming and software developed by the team. This could make it cost effective to manufacture and ultimately more affordable for industry. Dr Nikolic suggests that if industry were to identify specific potential uses, and the relevant testing and assessment was carried out, the technology could be in use within a year's time.