Why do DC motors fail?

Everything in this world has a limited time to operate, nothing lasts forever. So what factors play a key role in putting a DC motor out of action? Patrick Vega discusses the reasons why motors fail and the factors that cause service life to deteriorate.

Firstly let’s address the elephant in the room, who is not wearing the right gear? Who is not handling the motors with care? If a DC motor is not handled with care, it can be damaged, stopping the motor from functioning as it is designed to. If you drop a motor it could dislodge small components within it or even fracture them. An important factor to consider is ESD (Electro-Static Discharge), which is critical for brushless motors. ESD could damage the hall sensors or encoder, rendering them useless and unable to get any feedback from the control system. Brushless motors commutate electrically through Block or Sinusoidal commutation. Studies show that you can generate up to 15,000 volts in the human body so by releasing that energy you can short-circuit a motor. That’s why wearing the correct gear and thinking about how you are going to handle the motor is crucial.

Before even having bought a motor some environmental conditions must have been considered. This question should have been considered beforehand, what is the ambient temperature in which the motor operates? Each motor has its own operating range and this is dictated by the heat reliability of the materials and the viscosity of the lubricant in the bearings. If the actual ambient temperature falls outside this range, then expect failure sooner than you wanted. At low temperature the lubricant will freeze and increase friction within the bearing causing increasing wear and excessive axial play due to shrinkage of components. You will have the same consequences operating at high temperatures, however in this case the lubricant will become a liquid and it will run away from the areas where lubricant is needed. Another element that might need to be considered is the humidity of the environment in which it operates. High levels of humidity can cause corrosion within the bearing which causes increasing level of friction which has a growing effect on wear. This may damage the shaft and the bearings restricting the smooth rotating operation of the motor which can affect speed and torque. It also will lead to contamination within the drive due to the abrasive nature that is corrosion.

If you are unsure which maxon product to purchase there is a maxon team in the office ready to help. Please contact me on 01189 733 337 or Patrick.vega@maxonmotor.com.

To read the full article please go to https://www.maxonmotor.co.uk/maxon/view/news/Why-d...